Invariant Submanifold of $\tilde{\tilde{\psi}}(4 K+3,1)$ Structure Manifold

Lakhan Singh ${ }^{1}$, Shailendra Kumar Gautam ${ }^{2}$
${ }^{1}$ Department of Mathematics, D. J. College, Baraut, Baghpat, Uttar Pradesh, India
${ }^{2}$ Eshan College of Engineering, Mathura, Uttar Pradesh, India

Abstract

In this paper, we have studied various properties of a $\tilde{\psi}(4 K+3,1)$ structure manifold and its invariant submanifold, where K is a positive integer greater than or equal to one. Under two different assumptions, the nature of induced structure ψ, has also been discussed.

Keywords: Invariant submanifold, Nijenhuis tensor, projection operators and complementary distributions.

I. INTRODUCTION

Let V^{m} be a C^{∞} m-dimensional Riemannian manifold imbedded in a C^{∞} n-dimensional Riemannian manifold M^{n}, where $m<n$. The imbedding being denoted by

$$
f: V^{m} \longrightarrow M^{n}
$$

Let B be the mapping induced by f i.e. $B=d f$

$$
d f: T(V) \longrightarrow T(M)
$$

Let $T(V, M)$ be the set of all vectors tangent to the submanifold $f(V)$. It is well known that

$$
B: T(V) \longrightarrow T(V, M)
$$

Is an isomorphism. The set of all vectors normal to $f(V)$ forms a vector bundle over $f(V)$, which we shall denote by $N(V, M)$. We call $N(V, M)$ the normal bundle of V^{m}. The vector bundle induced by f from $N(V, M)$ is denoted by $N(V)$. We denote by $C: N(V) \longrightarrow N(V, M)$ the natural isomorphism and by $\eta_{s}^{r}(V)$ the space of all C^{∞} tensor fields of type (r, s) associated with $\mathrm{N}(\mathrm{V})$. Thus $\zeta_{0}^{0}(V)=\eta_{0}^{0}(V)$ is the space of all C^{∞} functions defined on V^{m} while an element of $\eta_{0}^{1}(V)$ is a C^{∞} vector field normal to V^{m} and
an element of $\zeta_{0}^{1}(V)$ is a C^{∞} vector field tangential to V^{m}.
Let \bar{X} and \bar{Y} be vector fields defined along $f(V)$ and \tilde{X}, \tilde{Y} be the local extensions of \bar{X} and \bar{Y} respectively. Then $[\tilde{X}, \tilde{Y}]$ is a vector field tangential to M^{n} and its restriction $[\tilde{X}, \tilde{Y}] / f(V)$ to $f(V)$ is determined independently of the choice of these local extension \tilde{X} and \tilde{Y}. Thus $[\bar{X}, \bar{Y}]$ is defined as

$$
\begin{equation*}
[\bar{X}, \bar{Y}]=[\tilde{X}, \tilde{Y}] / f(V) \tag{1.1}
\end{equation*}
$$

Since B is an isomorphism
(1.2) $\quad[B X, B Y]=B[X, Y] \quad$ for all $\quad X, Y \in \zeta_{0}^{1}(V)$

Let \bar{G} be the Riemannain metric tensor of M^{n}, we define g and g^{*} on V^{m} and $N(V)$ respectively as

$$
\begin{align*}
& g\left(X_{1}, X_{2}\right)=\tilde{G}\left(B X_{1}, B X_{2}\right) f, \text { and } \tag{1.3}\\
& g^{*}\left(N_{1}, N_{2}\right)=\tilde{G}\left(C N_{1}, C N_{2}\right) \tag{1.4}
\end{align*}
$$

For all $X_{1}, X_{2} \in \zeta_{0}^{1}(V)$ and $N_{1}, N_{2} \in \eta_{0}^{1}(V)$
It can be verified that g and g^{*} are the induced metrics on V^{m} and $N(V)$ respectively.

Let $\tilde{\nabla}$ be the Riemannian connection determined by \tilde{G} in M^{n}, then $\tilde{\nabla}$ induces a connection ∇ in $f(V)$ defined by
(1.5) $\nabla_{\bar{X}} \bar{Y}=\tilde{\nabla}_{\tilde{X}} \tilde{Y} / f(V)$
where \bar{X} and \bar{Y} are arbitrary C^{∞} vector fields defined along $f(V)$ and tangential to $f(V)$.
Let us suppose that M^{n} is a $C^{\infty} \tilde{\psi}(4 K+3,1)$ structure manifold with structure tensor $\tilde{\psi}$ of type (1,1) satisfying
(1.6) $\quad \tilde{\psi}^{4 K+3}+\tilde{\psi}=0$

Let \tilde{L} and $\tilde{\boldsymbol{M}}$ be the complementary distributions corresponding to the projection operators
(1.7) $\quad \tilde{l}=-\tilde{\psi}^{4 K+2}, \quad \tilde{m}=I+\tilde{\psi}^{4 K+2}$ where I denotes the identity operator.

From (1.6) and (1.7), we have
(a) $\tilde{l}+\tilde{m}=I$
(b) $\tilde{l}^{2}=\tilde{l}$
(c) $\quad \tilde{m}^{2}=\tilde{m}$
(d) $\quad \tilde{l} \tilde{m}=\tilde{m} \tilde{l}=0$

Let D_{l} and D_{m} be the subspaces inherited by complementary projection operators 1 and m respectively.
We define
$D_{l}=\left\{X \in T_{p}(V): l X=X, m X=0\right\}$
$D_{m}=\left\{X \in T_{p}(V): m X=X, I X=0\right\}$
Thus $T_{p}(V)=D_{l}+D_{m}$
Also $\operatorname{Ker} l=\{X: l X=0\}=D_{m}$
Ker $m=\{X: m X=0\}=D_{l}$
at each point p of $f(V)$.

II. METHODS AND MATERIAL

A. Invariant Submanifold of $\tilde{\psi}(4 K+3,1)$ Structure Manifold
We call V^{m} to be invariant submanifold of M^{n} if the tangent space $T^{p}(f(V))$ of $f(V)$ is invariant by the linear mapping $\tilde{\psi}$ at each point p of $f(V)$. Thus
$\tilde{\psi} B X=B \psi X$, for all $X \in \zeta_{0}^{1}(V)$, , and ψ being a $(1,1)$ tensor field in V^{m}.
Theorem (2.1): Let \tilde{N} and N be the Nijenhuis tensors determined by $\tilde{\psi}$ and ψ in M^{n} and V^{m} respectively, then
$\tilde{N}(B X, B Y)=B N(X, Y)$, for all $X, Y \in \zeta_{0}^{1}(V)$
Proof : We have, by using (1.2) and (2.1) (2.3)

$$
\begin{aligned}
\tilde{N}(B X, B Y)= & {[\tilde{\psi} B X, \tilde{\psi} B Y]+\tilde{\psi}^{2}[B X, B Y] } \\
& -\tilde{\psi}[\tilde{\psi} B X, B Y]-\tilde{\psi}[B X, \tilde{\psi} B Y] \\
= & {[B \psi X, B \psi Y]+\tilde{\psi}^{2} B[X, Y] } \\
& -\tilde{\psi}[B \psi X, B Y]-\tilde{\psi}[B X, B \psi Y]
\end{aligned}
$$

$$
=B[\psi X, \psi Y]+B \psi^{2}[X, Y]-\tilde{\psi} B[\psi X, Y]
$$

$$
-\tilde{\psi} B[X, \psi Y]
$$

$$
=B\left\{[\psi X, \psi Y]+\psi^{2}[X, Y]-\psi[\psi X, Y]\right.
$$

$$
-\psi[X, \psi Y]\}
$$

$$
=B N(X, Y)
$$

B. Distribution $\tilde{\boldsymbol{M}}$ Never being tangential to $f(V)$

Theorem (3.1) if the distribution $\tilde{\boldsymbol{M}}$ is never tangential to $f(V)$, then
(3.1) $\tilde{m}(B X)=0 \quad$ for all

$$
X \in \zeta_{0}^{1}(V)
$$

and the induced structure ψ on V^{m} satisfies

$$
\begin{equation*}
\psi^{4 K+2}=-I \tag{3.2}
\end{equation*}
$$

Proof : if possible $\tilde{m}(B X) \neq 0$. From (2.1) We get

$$
\begin{equation*}
\tilde{\psi}^{4 K+2} B X=B \psi^{4 K+2} X ; \text { from (1.7) and } \tag{3.3}
\end{equation*}
$$

$$
\begin{align*}
\tilde{m}(B X) & =\left(I+\tilde{\psi}^{4 K+2}\right) B X \tag{3.3}\\
& =B X+B \psi^{4 K+2} X
\end{align*}
$$

$$
\begin{equation*}
\tilde{m}(B X)=B\left(X+\psi^{4 K+2} X\right) \tag{3.4}
\end{equation*}
$$

This relation shows that $\tilde{m}(B X)$ is tangential to $f(V)$ which contradicts the hypothesis. Thus $\tilde{m}(B X)=0$. Using this result in (3.4) and remembering that B is an isomorphism, We get
(3.5) $\psi^{4 K+2}=-I$, which gives that $\psi^{2 K+1}$ acts as an almost complex structure on V^{m}. Thus V^{m} is even dimensional.

Theorem (3.2) Let $\tilde{\boldsymbol{M}}$ be never tangential to $f(V)$, then
(3.6) $\underset{\tilde{m}}{\tilde{N}}(B X, B Y)=0$

Proof : We have
(3.7) $\underset{\tilde{m}}{\tilde{N}}(B X, B Y)=[\tilde{m} B X, \tilde{m} B Y]+\tilde{m}^{2}[B X, B Y]$

$$
-\tilde{m}[\tilde{m} B X, B Y]-\tilde{m}[B X, \tilde{m} B Y]
$$

Using (1.2), (1.8) (c) and (3.1), we get (3.6).

Theorem (3.3) Let $\tilde{\boldsymbol{M}}$ be never tangential to $f(V)$, then

$$
\begin{equation*}
\tilde{N}(B X, B Y)=0 \tag{3.8}
\end{equation*}
$$

Proof : We have
(3.9)

$$
\begin{aligned}
\tilde{\tilde{N}}_{\tilde{l}}(B X, B Y)=[\tilde{l} B X, \tilde{l} B Y]+ & \tilde{l}^{2}[B X, B Y]-\tilde{l}[\tilde{l} B X, B Y] \\
& -\tilde{l}[B X, \tilde{l} B Y]
\end{aligned}
$$

Using (1.2), (1.8) (a), (b) and (3.1) in (3.9); we get (3.8)

Theoren (3.4) Let $\tilde{\boldsymbol{M}}$ be never tangential to $f(V)$. Define
(3.10)

$$
\begin{array}{r}
\tilde{H}(\tilde{X}, \tilde{Y})=\tilde{N}(\tilde{X}, \tilde{Y})-\tilde{N}(\tilde{m} \tilde{X}, \tilde{Y})-\tilde{N}(\tilde{X}, \tilde{m} \tilde{Y}) \\
+\tilde{N}(\tilde{m} \tilde{X}, \tilde{m} \tilde{Y})
\end{array}
$$

For all $\tilde{X}, \tilde{Y} \in \zeta_{0}^{1}(M)$, then
(3.11) $\tilde{H}(\tilde{X}, \tilde{Y})=B N(X, Y)$

Proof : Using $\tilde{X}=B X, \tilde{Y}=B Y$ and (2.2), (3.1) in (3.10) We get (3.11).

C. Distribution \tilde{M} Always Being Tangential To $f(V)$

Theorem (4.1) Let $\tilde{\boldsymbol{M}}$ be always tangential to $f(V)$, then
(4.1) (a) $\tilde{m}(B X)=B m X$

$$
\begin{equation*}
\tilde{l}(B X)=B l X \tag{b}
\end{equation*}
$$

Proof : from (3.4), We get (4.1) (a). Also

$$
\begin{align*}
& l=-\psi^{4 K+2} \tag{4.2}\\
& l X=-\psi^{4 K+2} X \\
& B l X=-B \psi^{4 K+2} X \quad \text { Using (2.1) in } \tag{4.3}
\end{align*}
$$

$$
\begin{equation*}
B l X=-\tilde{\psi}^{4 K+2} B X=\tilde{l}(B X) \tag{4.4}
\end{equation*}
$$

which is (4.1) (b).

Theorem (4.2) Let \tilde{M} be always tangential to $f(V)$, then l and m satisfy
(4.5) (a) $l+m=I$ (b) $l m=m l=0$ (c) $l^{2}=l$ (d) $m^{2}=m$.

Proof : Using (1.8) and (4.1) We get the results.
Theorem (4.3) If $\tilde{\boldsymbol{M}}$ is always tangential to $f(V)$, then
(4.6) $\quad \psi^{4 K+3}+\psi=0$

Proof : From (2.1)
$\tilde{\psi}^{4 K+3} B X=B \psi^{4 K+3} X$ Using (1.6) in
$-\tilde{\psi} B X=B \psi^{4 K+3} X$
$-B \psi X=B \psi^{4 K+3} X \quad$ Or
$\psi^{4 K+3}+\psi=0$, which is (4.6)
Theorem (4.4) : If $\tilde{\boldsymbol{M}}$ Is always tangential to $f(V)$ then as in (3.10)
(4.8)

$$
\tilde{H}(B X, B Y)=B H(X, Y)
$$

Proof: from (3.10) we get

$$
\begin{aligned}
\tilde{H}(B X, B Y) & =\tilde{N}(B X, B Y)-\tilde{N}(\tilde{m} B X, B Y) \\
& -\tilde{N}(B X, \tilde{m} B Y)+\tilde{N}(\tilde{m} B X, \tilde{m} B Y)
\end{aligned}
$$

Using (4.1) (a) and (2.2) in (4.9) we get (4.8).

III. REFERENCES

[1] A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
[2] B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
[3] F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
[4] Endo Hiroshi: On invariant submanifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
[5] H.B. Pandey \& A. Kumar:Anti-invariant submanifold of almost para contact manifold. Prog. of Maths Volume 21(1): 1987.
[6] K. Yano:On a structure defined by a tensor field f of the type $(1,1)$ satisfying $\mathrm{f} 3+\mathrm{f}=0$. Tensor N.S., 14 (1963), 99-109.
[7] R. Nivas \& S. Yadav:On CR-structures and - HSU structure satisfying , Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).

